MENU: Home Bio Affiliations Research Teaching Publications Videos Collaborators/Students Contact FAQ ©2007-14 RSS

Paper (2011) in IEEE PAMI: “Bilayer Segmentation of Webcam Videos Using Tree-Based Classifiers “

January 12th, 2011 Irfan Essa Posted in Antonio Crimisini, Computational Photography and Video, John Winn, Numerical Machine Learning, PAMI/ICCV/CVPR/ECCV, Papers, Pei Yin No Comments »

Bilayer Segmentation of Webcam Videos Using Tree-Based Classifiers

Pei Yin, A. Criminisi, J. Winn, I. Essa (2011), “Bilayer Segmentation of Webcam Videos Using Tree-Based Classifiers” in Pattern Analysis and Machine Intelligence, IEEE Transactions on, Jan. 2011, Volume :  33 ,  Issue:1, ISSN :  0162-8828, Digital Object Identifier :  10.1109/TPAMI.2010.65,  IEEE Computer Society [Project Page|DOI]

ABSTRACT

This paper presents an automatic segmentation algorithm for video frames captured by a (monocular) webcam that closely approximates depth segmentation from a stereo camera. The frames are segmented into foreground and background layers that comprise a subject (participant) and other objects and individuals. The algorithm produces correct segmentations even in the presence of large background motion with a nearly stationary foreground. This research makes three key contributions: First, we introduce a novel motion representation, referred to as “motons,” inspired by research in object recognition. Second, we propose estimating the segmentation likelihood from the spatial context of motion. The estimation is efficiently learned by random forests. Third, we introduce a general taxonomy of tree-based classifiers that facilitates both theoretical and experimental comparisons of several known classification algorithms and generates new ones. In our bilayer segmentation algorithm, diverse visual cues such as motion, motion context, color, contrast, and spatial priors are fused by means of a conditional random field (CRF) model. Segmentation is then achieved by binary min-cut. Experiments on many sequences of our videochat application demonstrate that our algorithm, which requires no initialization, is effective in a variety of scenes, and the segmentation results are comparable to those obtained by stereo systems.

via IEEE Xplore – Abstract Page.

AddThis Social Bookmark Button

Paper: IEEE CVPR (2007) “Tree-based Classifiers for Bilayer Video Segmentation”

June 17th, 2007 Irfan Essa Posted in 0205507, Antonio Crimisini, Computational Photography and Video, Funding, John Winn, Numerical Machine Learning, Papers, Pei Yin, Research No Comments »

Yin, Pei Criminisi, Antonio Winn, John Essa, Irfan (2007), Tree-based Classifiers for Bilayer Video Segmentation In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR ’07, 17-22 June 2007, page(s): 1 – 8, Location: Minneapolis, MN, USA, ISBN: 1-4244-1180-7, Digital Object Identifier: 10.1109/CVPR.2007.383008

Abstract

This paper presents an algorithm for the automatic segmentation of monocular videos into foreground and background layers. Correct segmentations are produced even in the presence of large background motion with nearly stationary foreground. There are three key contributions. The first is the introduction of a novel motion representation, “motons”, inspired by research in object recognition. Second, we propose learning the segmentation likelihood from the spatial context of motion. The learning is efficiently performed by Random Forests. The third contribution is a general taxonomy of tree-based classifiers, which facilitates theoretical and experimental comparisons of several known classification algorithms, as well as spawning new ones. Diverse visual cues such as motion, motion context, colour, contrast and spatial priors are fused together by means of a Conditional Random Field (CRF) model. Segmentation is then achieved by binary min-cut. Our algorithm requires no initialization. Experiments on many video-chat type sequences demonstrate the effectiveness of our algorithm in a variety of scenes. The segmentation results are comparable to those obtained by stereo systems.

AddThis Social Bookmark Button