Paper in IEEE WACV (2017): “Complex Event Recognition from Images with Few Training Examples”

Paper

  • U. Ahsan, C. Sun, J. Hays, and I. Essa (2017), “Complex Event Recognition from Images with Few Training Examples,” in IEEE Winter Conference on Applications of Computer Vision (WACV), 2017. [PDF] [arXiv] [BIBTEX]
    @InProceedings{    2017-Ahsan-CERFIWTE,
      arxiv    = {https://arxiv.org/abs/1701.04769},
      author  = {Unaiza Ahsan and Chen Sun and James Hays and Irfan
          Essa},
      booktitle  = {IEEE Winter Conference on Applications of Computer
          Vision (WACV)},
      month    = {March},
      pdf    = {http://www.cc.gatech.edu/~irfan/p/2017-Ahsan-CERFIWTE.pdf},
      title    = {Complex Event Recognition from Images with Few
          Training Examples},
      year    = {2017}
    }

Abstract

We propose to leverage concept-level representations for complex event recognition in photographs given limited training examples. We introduce a novel framework to discover event concept attributes from the web and use that to extract semantic features from images and classify them into social event categories with few training examples. Discovered concepts include a variety of objects, scenes, actions and event subtypes, leading to a discriminative and compact representation for event images. Web images are obtained for each discovered event concept and we use (pre-trained) CNN features to train concept classifiers. Extensive experiments on challenging event datasets demonstrate that our proposed method outperforms several baselines using deep CNN features directly in classifying images into events with limited training examples. We also demonstrate that our method achieves the best overall accuracy on a data set with unseen event categories using a single training example.

Tags: , , , | Categories: Computational Journalism, Computational Photography and Video, Computer Vision, PAMI/ICCV/CVPR/ECCV, Papers, Unaiza Ahsan | Date: March 27th, 2017 | By: Irfan Essa |

No Comments »

You can follow any responses to this entry through the RSS 2.0 feed. You can leave a response, or trackback from your own site.

Leave a Reply