Paper: IEEE CVPR (2006) “Learning Temporal Sequence Model from Partially Labeled Data”

Yifan Shi, Bobick, A. Essa, I. (2006), “Learning Temporal Sequence Model from Partially Labeled Data” Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006
Volume: 2, page(s): 1631 – 1638, ISSN: 1063-6919, ISBN: 0-7695-2597-0, Digital Object Identifier: 10.1109/CVPR.2006.174 [IEEEXplore]

Abstract

Graphical models are often used to represent and recognize activities. Purely unsupervised methods (such as HMMs) can be trained automatically but yield models whose internal structure – the nodes – are difficult to interpret semantically. Manually constructed networks typically have nodes corresponding to sub-events, but the programming and training of these networks is tedious and requires extensive domain expertise. In this paper, we propose a semi-supervised approach in which a manually structured, Propagation Network (a form of a DBN) is initialized from a small amount of fully annotated data, and then refined by an EM-based learning method in an unsupervised fashion. During node refinement (the M step) a boosting-based algorithm is employed to train the evidence detectors of individual nodes. Experiments on a variety of data types – vision and inertial measurements – in several tasks demonstrate the ability to learn from as little as one fully annotated example accompanied by a small number of positive but non-annotated training examples. The system is applied to both recognition and anomaly detection tasks.

Tags: , , , | Categories: Aaron Bobick, Activity Recognition, Aware Home, Papers, Research, Yifan Shi | Date: June 14th, 2006 | By: Irfan Essa |

No Comments »

You can follow any responses to this entry through the RSS 2.0 feed. You can leave a response, or trackback from your own site.

Leave a Reply