Paper: Asilomar Conference (2003) “Boosted audio-visual HMM for speech reading”

Yin, P. Essa, I. Rehg, J.M. (2003) “Boosted audio-visual HMM for speech reading.” In Proceedings Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, 2003. Date: 9-12 Nov. 2003, Volume: 2, On page(s): 2013 – 2018 Vol.2, , ISBN: 0-7803-8104-1, INSPEC Accession Number:8555396, Digital Object Identifier: 10.1109/ACSSC.2003.1292334

Abstract

We propose a new approach for combining acoustic and visual measurements to aid in recognizing lip shapes of a person speaking. Our method relies on computing the maximum likelihoods of (a) HMM used to model phonemes from the acoustic signal, and (b) HMM used to model visual features motions from video. One significant addition in this work is the dynamic analysis with features selected by AdaBoost, on the basis of their discriminant ability. This form of integration, leading to boosted HMM, permits AdaBoost to find the best features first, and then uses HMM to exploit dynamic information inherent in the signal.

Tags: , , | Categories: 0205507, Face and Gesture, Funding, James Rehg, Machine Learning, Papers, Pei Yin | Date: November 9th, 2003 | By: Irfan Essa |

No Comments »

You can follow any responses to this entry through the RSS 2.0 feed. You can leave a response, or trackback from your own site.

Leave a Reply