Paper ICCV (1009): Exploiting Human Actions and Object Context for Recognition Tasks

D. J. Moore, I. Essa, and M. Hayes (1999) “Exploiting Human Actions and Object Context for Recognition Tasks.” In Proceedings of Seventh International Conference on Computer Vision (ICCV’99), Volume 1, p. 80, Sept 20, 1999. ISBN: 0-7695-0164-8. [ DOI | PDF | Project Site]

Abstract

Overhead Image for Object/Action Recognition in the Office

Overhead Image for Object/Action Recognition in the Office

Our goal is to exploit human motion and object context to perform action recognition and object classification. Towards this end, we introduce a framework for recognizing actions and objects by measuring image-, object- and action-based information from video. Hidden Markov models are combined with object context to classify hand actions, which are aggregated by a Bayesian classifier to summarize activities. We also use Bayesian methods to differentiate the class of unknown objects by evaluating detected actions along with low-level, extracted object features. Our approach is appropriate for locating and classifying objects under a variety of conditions including full occlusion. We show experiments where both familiar and previously unseen objects are recognized using action and context information.

Tags: , | Categories: Activity Recognition, Darnell Moore, Intelligent Environments, PAMI/ICCV/CVPR/ECCV, Papers | Date: September 20th, 1999 | By: Irfan Essa |

No Comments »

You can follow any responses to this entry through the RSS 2.0 feed. You can leave a response, or trackback from your own site.

Leave a Reply